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Abstract. The scattering of ultrasound from bubbles of ∼ 1 µm radius, such as used in contrast enhancers
for ultrasound diagnostics, is studied. We show that sound scattering and “active” emission of sound from
oscillating bubbles are not contradictory, but are just two different aspects derived from the same physics.
Treating the bubble as a nonlinear oscillator, we arrive at general formulas for scattering and absorption
cross-sections. We show that several well-known formulas are recovered in the linear limit of this ansatz.
In the case of strongly nonlinear oscillations, however, the cross-sections can be larger than those for linear
response by several orders of magnitude. The major part of the incident sound energy is then converted
into emitted sound, unlike what happens in the linear case, where the absorption cross-sections exceed the
scattering cross-sections.

PACS. 87.59.Mt Ultrasonography – 43.80.+p Bioacoustics – 43.25.+y Nonlinear acoustics, macrosonics

1 Introduction

In recent years, a new kind of contrast agent for use in
ultrasound diagnostics has been developed: suspensions
of gas filled microbubbles, i.e., bubbles of at most a few
micrometers in diameter [1]. The enhancement of image
brightness and contrast is mostly due to the well-known
fact that microbubbles of this size can have tremendous
scattering cross-sections for the incident diagnostic ultra-
sound (with frequencies around 1−10 MHz) [2]. A number
of different theoretical approaches are present in litera-
ture, resulting in formulas for the scattering and absorp-
tion cross-sections that do not always seem compatible
(see e.g. [1,3–5]). It is one of the main goals of this work
to show that all of these results can be understood as spe-
cial cases of a unified approach which treats the bubble
as a (generally nonlinear) volume oscillator. The different
appearance in literature is only due to the use of different
formalisms (e.g. full-fledged scattering theory with par-
tial wave decomposition [5] or linear oscillator theory [4])
and the validity of different limiting cases (e.g. neglecting
surface tension [1,3]).
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The other main goal of our present study is to go be-
yond previous work [6], where monochromatic driving was
treated, and employ pulsed driving within our formalism,
in order to achieve a more realistic modeling of the situa-
tion in diagnostic applications. The analysis of the emitted
sound from the bubbles in terms of intensity and spectral
distribution is of obvious importance to assess the signal
quality of ultrasonography with bubble contrast agents.
While a large number of publications have dealt with the
sound emission of linearly oscillating bubbles (see e.g. [4,5]
and references therein), and the weakly nonlinear case was
treated by Prosperetti [7,8], a systematic study of cross-
sections for strongly nonlinear response to pulsed driving
has, to our knowledge, not yet been performed. It is this
fully nonlinear case of bubble oscillations which is encoun-
tered in ultrasound diagnostics as driving pressure ampli-
tudes of up to ∼ 10 atm are common, whereas strong
nonlinearities occur already for amplitudes . 1 atm.

We present our general, unifying approach in Section 2
and show in Section 3 how it translates to a multitude of
linear limiting cases, where analytical results can be ob-
tained if monochromatic driving is assumed. Still in the
linear limit, we then introduce pulsed driving in Section 4
and finally present results for the full nonlinear case in Sec-
tion 5. A more detailed discussion, especially of spectral
properties of the emitted sound for nonlinear response,
will be postponed to another publication [9]. Section 6
presents conclusions.
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2 Sound emission and absorption

2.1 Emitted sound pressure

We want to evaluate the pressure of emitted sound Ps(r, t)
from a body capable of volume oscillations (i.e., a bubble)
driven by an incident pressure wave P (t). First, we notice
that there are two contributions to Ps(r, t):

(i) the active emission of sound, caused by the change of
volume of the body, and;

(ii) the passive contribution due to the mere presence of
the (maybe non-oscillating) body in the incident field.

Thus, we can write

Ps(r, t) = P as (r, t) + P ps (r, t). (1)

For a body of volume Vb(t) which is much smaller than the
wavelength of the incident sound, the pressure P as (r, t) of
actively emitted sound is given to leading order by [3,10]

P as (r, t) =
ρl

4πr

d2Vb

dt2
· (2)

Here, ρl is the liquid density and we have adopted a spher-
ical coordinate system with radius r. There is no angular
dependence because we have assumed the long wavelength
limit (S wave scattering). For a spherical bubble with ra-
dius dynamics R(t), (2) easily translates to

P as (r, t) = ρl
R(t)

r

(
2Ṙ(t)2 +R(t)R̈(t)

)
=

1

r
qas (t) , (3)

where we have introduced qas (t) ≡ rP as (r, t), thus separat-
ing the trivial (geometrical) 1/r spatial dependence of the
radiation from the time-dependent part.

The second term P ps (r, t) in (1) is the pressure of pas-
sively emitted sound due to the mere presence of the body.
It arises from the perturbation of the density field in wa-
ter: if the body was not present, the incident sound wave
could induce density changes in the volume of liquid oc-
cupied by the body. As this cannot happen, the situation
is equivalent to having an oscillator that compensates the
effects of the sound wave; this oscillator has a (virtual)
volume change

dV

dt
= V0

dρl/dt

ρl
, (4)

with the (now constant) volume V0 of the body, see [3].
For a sound wave P (t), we have dP/dρl = c2l , where the
derivative is taken at constant entropy. Then, in analogy
to (2), replacing Vb by V and inserting V0 = 4πR3/3, we
get the leading order pressure change due to the passive
reaction to the sound wave

P ps (r, t) =
1

3rc2l
R3(t)P̈ (t) =

1

r
qps(t) , (5)

where cl is the speed of sound in the liquid. Note again
that we are in the limit R(t) � λ, where λ is the wave-
length of incident sound. Therefore, the driving pressure
P (t) can be treated as spatially uniform, i.e., the pressure
experienced by the bubble does not vary over its size. In
analogy to (3), we have defined the quantity qps(t).

2.2 Bubble oscillation

To evaluate (3) or (5), we need a formula for R(t). The
oscillatory behavior of the radius R of a gas bubble in a
liquid is well described by the Rayleigh-Plesset equation
[11,10]. Many variants of this equation have been pre-
sented (see e.g. [12–18]); the following form has proved to
be robust and close to experiment even in situations of
massively nonlinear bubble behavior, as e.g. in sonolumi-
nescence experiments [19]:

RR̈+
3

2
Ṙ2 =

1

ρl
(p(R, t)− P (t)− P0)

+
R

ρlcl

d

dt
p(R, t)− 4νl

Ṙ

R
−

2ζ

ρlR
· (6)

We have introduced the liquid viscosity νl and surface
tension ζ here, as well as the ambient pressure P0 taken
to be 1 atm in this work. All liquid parameters assume
the values of water, except for νl, which is multiplied by
three to mimic the viscosity of blood [20]. p(R, t) stands
for the gas pressure inside the bubble and is modeled by
a polytropic process equation with van der Waals hard
core and parameters for air. The polytropic exponent is
taken to be one, because bubbles of the sizes we treat here
(∼ 1 µm) are smaller than the thermal diffusion length on
the time scales of the oscillation, and can therefore be
regarded as isothermal [21,22].

2.3 Scattering cross-sections

In general, the scattering cross-section σsc is related to the
incident intensity (energy/area/time) Iinc and the scat-
tered power Wsc (energy/time) via

Wsc = σsc Iinc , (7)

and has thus the dimensions of an area. Iinc is determined
by the incident pressure wave P (t), namely (see, e.g., [3],
§65)

Iinc =
1

ρlcl
〈P 2(t)〉t (8)

and Wsc follows from Ps(r, t) through

Wsc =
4π

ρlcl
〈r2P 2

s (r, t)〉t =
4π

ρlcl
〈q2
s(t)〉t . (9)

Here, 〈·〉t denotes a time mean; we have exploited the
virial theorem to express intensities and powers solely in
terms of pressures (the “potential” part of the energy of
the wave). The integral

Esc =
4π

ρlcl

∫ τ

0

q2
s(t) dt (10)

gives the total scattered energy over a time span τ (e.g.
the duration of an incident sound pulse).
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From these definitions, it is clear that the general for-
mula for the scattering cross-section is

σsc =
4π

〈P 2(t)〉t
〈q2
s(t)〉t =

4π

〈P 2(t)〉t
〈[qas (t) + qps (t)]

2〉t .

(11)
We notice that the active and passive parts interfere. It
is therefore, strictly speaking, wrong to divide σsc into
an active and a passive part, as it is sometimes done in
literature. Nevertheless, it will be shown below that in
the case of diagnostic bubbles the total scattering cross-
section is almost exclusively due to the active part P as of
(1), while the passive contribution can safely be neglected.

There are other possible contributions to Ps(r, t), e.g.
direct or indirect results of bubble shape oscillations.
These are not analyzed here because perfect sphericity
is assumed. Also, there is a contribution if the bubble (or
the body in general) can be translated as a whole by the
incident sound. This term is orthogonal to those treated
above (i.e., the interference terms vanish) and results in
a well-defined additional scattering cross-section (cf. [3]
§78 or [1]) with a characteristic angular dependence. As
it is (for the case of a gas bubble in a liquid) always of
the same order of magnitude as the passive contribution,
and is therefore equally negligible, we do not treat it here
in detail. Finally, if two or more bubbles come close to
each other, they will change the emitted sound field either
by direct secondary scattering or indirectly by modify-
ing their modes of oscillation (e.g. via secondary Bjerknes
forces [23,24]). We will not try to incorporate these effects,
but restrict ourselves to the case of a single bubble.

2.4 Absorption cross-section

We have so far regarded the scattering cross-section as an
indicator of the acoustic energy deflected by the scatterer.
Likewise, the absorption cross-section σνabs stands for the
energy loss induced by the viscous term in the RP equation
(6). In this case the energy is directly converted into heat
and will, in general, be of little use to the experimenter,
whereas the scattered sound can be detected much more
easily. Nevertheless, σνabs is important in order to assess
the energy balance of the scattering process. The liquid
viscosity exerts a stress

pvis =
4νlρlṘ

R
(12)

over the bubble surface of size A = 4πR2 (this can be
read off directly from the RP equation). As the bubble

wall moves with velocity Ṙ, the dissipated power is

W ν
dis = pvisAṘ = 16πνlρlRṘ

2 . (13)

The absorption cross-section is determined in analogy to
σsc via

W ν
dis = σνabs Iinc . (14)

3 Small driving: the linear case

The formulas given in the previous sections can be ap-
plied to all cases of bubble motion and subsequent sound
emission. For small driving, they reduce to the linear case
and almost all quantities can be calculated analytically.
First of all, the RP equation can be linearized: we set
R(t) = R0(1 + x(t)) (R0 is the radius of the undriven
bubble under ambient conditions) and get

ẍ+ 2γẋ+ ω2
0x =

P (t)

ρlR
2
0

(15)

with the viscous damping constant γ =
2νl
R2

0

and the bub-

ble eigenfrequency

ω2
0 =

3κgP0

ρlR
2
0

+
4ζ

ρlR
3
0

· (16)

This latter quantity consists of two distinct terms, the
first due to the gas pressure p(R, t), and the second gov-
erned by surface tension ζ. For p(R, t), a polytropic ideal
gas formula was chosen. While it is advisable to employ
a more elaborate formula (e.g. a van der Waals gas with
hard core) if the bubble oscillation is violent, the ideal
gas is a very good approximation in the linear limit. The
polytropic exponent κg measures the gas compressibility
(p(R, t) ∝ ρ

κg
g ); it is 1 for isothermal behavior and equal to

the adiabatic exponent for adiabatic behavior of an ideal
gas (e.g. 7/5 for air). In deriving equation (15), we note
that effects of thermal damping are neglected (as they
have not been present in (6), either), and also radiation
damping (caused in (6) by the term involving cl) is not
present. Both of these damping effects are very small in
the parameter range of our interest; thus, γ only contains
viscous damping contributions.

To get explicit solutions, let us assume monochromatic
driving P (t) = Pa cosωdt in (15). Pa is the driving pres-
sure amplitude, ωd = 2πfd the angular driving frequency.
This yields

x(t) = ε cos(ωdt+ δ) (17)

with the amplitude

ε = −
Pa

ρlR
2
0

1√
(ω2

0 − ω
2
d)

2 + 4γ2ω2
d

, (18)

and the phase shift

δ = arctan

(
2γωd
ω2
d − ω

2
0

)
· (19)

Obviously, in the monochromatic case Iinc =
P 2
a

2ρlcl
. With

R(t) from x(t), equations (3, 5, 11) we get

σlinsc = 4πR2
0

〈[ √
2ω2

d cos(ωdt+ δ)√
(ω2

0 − ω
2
d)

2 + 4γ2ω2
d

−

√
2

3c2l
R2

0ω
2
d cosωdt

]2〉
t

. (20)
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Fig. 1. Numerical computation (solid line) and scaling be-
haviors of the normalized scattering cross-section for bubbles
driven with a monochromatic 50 kHz sound wave at small drive
amplitudes (linear case). We chose a representation similar to
that of Nishi [5], displaying σsc divided by the geometrical
cross-section πR2

0 on a double logarithmic plot. To the right
of the resonance peak (for large R0), σsc/(πR

2
0) relaxes to 4

(dot-dashed line). In the opposite limit of small R0, it scales
∝ R4

0 (dashed) for an interval, but becomes steeper again for
very small R0, reaching an asymptote ∝ R6

0 (long dashed).
These scaling laws correspond to the R6

0 and R8
0 behaviors of

the unnormalized σsc, respectively (cf. Eqs. (23, 24)).

Note that σlinsc does not depend on the absolute size of Pa,
as long as the oscillation stays linear. Fortunately, in all
cases of interest to bubble ultrasound diagnostics, i.e., for
frequencies in the MHz range and R0 between a few tenths
of a micron and a few microns, the second (passive) term
of this formula is negligible compared to the first (active)
part. We will show in detail below that the dominance of
the active emission is so overwhelming that the relative
errors in neglecting the passive contribution never exceed
0.25% in the parameter range of this study. Dropping the
passive term, we get the considerably simplified expres-
sion (reproducing results presented e.g. in Leighton [4] in
Sect. 4.1)

σlinsc ≈ 4πR2
0

ω4
d

(ω2
0 − ω

2
d)

2 + 4γ2ω2
d

· (21)

This formula can also be translated into the S wave scat-
tering limit of the complete scattering analysis by Nishi
[5]. In equation (47) of that work, there are additional
contributions to γ due to thermal and radiation damping,
as well as modifications involving the stiffness of the bub-
ble. In certain limiting cases, (21) gets further simplified.
Moreover, a rich variety of scaling behaviors, especially
in R0, can be found. The richness (as compared to “or-
dinary” linear oscillators) is due to the fact that in (15),
the damping, driving frequency and dimensionless driv-
ing all depend on R0. In Figure 1 σlinsc is presented for a
50 kHz-driven bubble, a frequency chosen such that most
of the limiting cases treated in the following subsections
can be illustrated by the graph. Note that all cross-section
graphs in this work were computed with the full numerical
formulas presented in Section 2.

3.1 Small bubbles: dominance of gas pressure
or surface tension

For small bubbles (such that ω0 � ωd) the denominator
of the active contribution in (20) simplifies to ω2

0. It is
crucial here to verify which of the two contributions to ω0

in (16) is dominant. If surface tension is very small (and
R0 is not extremely tiny), ω0 will be governed by the first
term, i.e., the one due to the internal gas pressure. With
the polytropic ansatz, we can use c2g = κgP0/ρg for the
speed of sound in the gas cg and from (20) the limiting
behavior for small R0 is then

σlinsc →
4π

9

R6
0ω

4
d

c4l

(
1−

Kg

Kl

)2

(22)

with the compressibilities Ki = 1/(ρic
2
i ) for the bubble

interior (i = g) and exterior (i = l). This reproduces the
equations presented e.g. by Landau [3] §78, deJong [25]
or Meerbaum in Nanda/Schlief [1] (apart from the trans-
lational contribution mentioned in Sect. 2.3 above). Note
that in the case of gas bubbles in a liquid, Kg will be much
greater than Kl, so that to very good approximation

σlinsc →
4π

9

R6
0ω

4
d

c4l

(
Kg

Kl

)2

(23)

and the dominance of the active scattering is again con-
firmed. In fact, as for typical materials ρl ≈ 1000ρg and
cl ≈ 5cg, the active emission can surmount what would
be expected from a purely passive scatterer by more than
eight orders of magnitude! This is why oscillating bubbles
are so much superior to (completely passive) hard spheres
in terms of ultrasound scattering capability. In Figure 1
there is indeed a region where the ∝ R6

0 behavior of σlinsc
is observed. Note, however, that the validity of equations
(22, 23) for bubbles is limited, especially as surface tension
is explicitly neglected.

If surface tension is taken into account and the pa-
rameters for water are inserted into (16), we see that for
R0 ≤ 0.96 µm the surface tension term dominates ω0, so
that ω2

0 → 4ζ/ρlR
3
0. As a consequence, the active scatter-

ing cross-section will acquire a different limit, namely

σlinsc →
πR8

0ω
4
dρ

2
l

4ζ2
· (24)

The steeper ∝ R8
0 behavior takes over in Figure 1 for very

small bubbles, as expected. As the passive contributions
scale like R6

0, there has to be a (small) radius where the
latter become dominant. This radius is easily calculated
to be

Rp0 =
4ζ

3ρlc2l
, (25)

which, for the material constants of the water/air
(blood/air) system, is≈ 4.4×10−11 m, i.e., on a subatomic
scale which is not described by the physics discussed here.
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Fig. 2. Numerical computation (solid lines) and scaling be-
haviors of the normalized linear scattering (thick lines) and
absorption (thin lines) cross-sections for bubbles driven with
a monochromatic 3 MHz sound wave (diagnostic frequency).
The resonance features as well as the large R0 limit of 4 (dot-
dashed) are again present in σsc/(πR

2
0). Of the small R0 lim-

its, only the surface tension governed σlinsc ∝ R
8
0 remains (long

dashed). The corresponding scaling laws for σν,linabs /(πR2
0) are

∝ R−1
0 (dashed) for large and ∝ R5

0 (long dashed) for small
R0.

3.2 Linear resonance

When R0 is such that ω0 ∼ ωd, the bubble is near res-
onance, i.e., its oscillation amplitude ε and thus σlinsc be-
come much larger than for neighboring R0. E.g., for the
case of air bubbles in blood driven with ωd = 2π×3 MHz,
it reaches values of about 15 times the geometrical cross-
section πR2

0 (cf. Fig. 2), i.e., the normalized cross-section
σlinsc /(πR

2
0) is larger than for any other radius. From (21),

it is easy to get

σlin,ressc ≈
π(Rres0 )6ω2

d

4ν2
l

, (26)

where Rres0 is determined by the condition ω0(Rres0 ) = ωd.
The height of the resonance peak is thus mainly deter-
mined by the strength of damping, i.e., the viscosity of
the liquid. In water with its three times lower viscosity, the
maximum cross-section is therefore 9 times higher than in
blood. The (Lorentz shaped) resonance peak is the hall-
mark of the classical pictures of linear bubble scattering
cross sections (see [1,4,5]). We will see that this shape
changes considerably in the nonlinear case.

3.3 Large bubbles: the “soft sphere” limit

For large bubbles (but still obeying R� λ), ωd � ω0 and

σlinsc → 4πR2
0, (27)

i.e., the scattering cross-section becomes four times the
geometrical cross-section, which is also reproduced in Fig-
ure 1. Equation (27) describes the behavior for all R0 if
the bubble interior is arbitrarily compressible while surface
tension is absent (ζ = 0). This can be seen if we imagine
κg → 0 (implying cg → 0 and Kg →∞) and thus ω0 → 0:

the resonance peak is shifted to very small R0 and every
larger ambient radius results in the “soft sphere limit”
cross-section (27).

In reality, for large bubbles there are of course still
the interference contributions with the passive term ∝ R6

0.
But the influence of P ps can only outweigh the active emis-

sion for R0 >
√

3
2π λ (which is again easy to prove); this is al-

ready in a region where the assumptionR0 � λ is dubious.
In fact, for diagnostic ultrasound with ωd = 2π × 3 MHz,
λ ≈ 500 µm, resulting in a critical radius for passive in-
fluence of R0 . 140 µm. Thus, there is at most a very
small region of transition until the scattering cross-section
has to be described by completely different formulas (Mie
scattering theory), and the bubbles in this region are of
no interest to ultrasound diagnostics because of their size.

3.4 Other limits

There are a number of limiting cases of equations (20, 21)
that go beyond the parameter space of this study; they
are given here for completeness:

– In the limit of R0 � λ, the cross-section relaxes to the
limit σsc = 2πR2

0 [5]. This is only relevant for mm-sized
or even larger bubbles.

– If we apply our formulas to solid spheres in a liq-
uid rather than bubbles, i.e., we make the interior
of the “bubble” much more stiff than the liquid, the
main contribution in (22) is the passive scattering, as
Kg/Kl � 1. The resulting cross-section is the “hard
sphere” Rayleigh limit

σRasc =
4π

9

R6
0ω

4
d

c4l
· (28)

In analogy to the case of the “soft sphere” above, the
resonance peak is shifted to arbitrarily large radii for
an arbitrarily stiff bubble, so that here (28) is valid for
every finite R0.

3.5 The regime of ultrasound diagnostics

It is important to note that for the typical µm size bub-
bles of ultrasound diagnostics applications, the relevant
limiting cases of the linear formulas (20, 21) are equa-
tions (24, 26, 27). The case of σlinsc ∝ R6

0 given by (22)
does not occur, because the resonance radii Rres0 are –
for MHz driven bubbles – in the range of the crossover
ambient radius R0 ≈ 0.96 µm between gas pressure and
surface tension dominated resonances. Thus, the oscilla-
tions of bubbles with R0 < Rres0 are all surface tension
dominated, and never show the R6

0 behavior. This is obvi-
ous in Figure 2, which shows the linear cross-sections for
3 MHz driven bubbles in blood. In contrast to Figure 1,
there is a direct transition from the resonance peak to a
curve σlinsc ∝ R

8
0.
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3.6 Linear absorption cross-sections

The linear analysis is naturally extended to absorption
cross-sections; the analytical formula for σνabs in the case
of monochromatic driving is easily found via (14) and (17–
19) to be

σν,linabs =
16πνlcl
R0

ω2
d

(ω2
0 − ω

2
d)

2 + 4γ2ω2
d

· (29)

Here, the limiting cases for small bubbles show σν,linabs ∝ R
3
0

for smallR0 for gas pressure dominated ω0 and σν,linabs ∝ R
5
0

for the surface tension dominated case (see Fig. 2). Thus,

σν,linabs � σlinsc for small bubbles, i.e., most of the energy
incident on the bubble is converted into heat through vis-
cous damping, whereas only a small part is available for
sound emission. The already surprisingly high scattering
cross-section for microbubbles is outnumbered consider-
ably by the absorption cross-section. The same is true in
resonance, where

σν,lin,resabs

σlin,ressc

≈
4νlcl

(Rres0 )3ω2
d

≈ 23 (30)

can be calculated for fd = 3 MHz and the material con-
stants of blood, in very good agreement with numerical
computation (cf. Fig. 2).

For large R0 above the resonance radius we have
σν,linabs ∝ R

−1
0 ; as σlinsc grows like R2

0, we have in this range

σν,linabs � σlinsc , and the major part of the energy goes into
sound emission.

4 Pulsed driving

4.1 The incident pulse

One assumption that allowed us to give simple analytical
formulas was the monochromaticity of the driving. In re-
ality, bubbles in ultrasound diagnostics are driven by the
signal of a diagnostic transducer, which is almost always
pulsed, and quite often (e.g. in pulse wave Doppler mode)
the pulses are only a few wavelengths long.

In closer agreement with experimental reality, we
therefore model the pressure pulse P (t) as

P (t) = Pa cos(ωd(t− tc)) exp

(
−
h2ω2

d

4
(t− tc)

2

)
, (31)

centered around tc with relative width h. We choose
h = 1/3 here. After Fourier transform, the frequency space
representation is

P (ω) =
Pa

hωd

[
exp

(
−

(ω − ωd)2

h2ω2
d

)
+ exp

(
−

(ω + ωd)
2

h2ω2
d

)]
.

(32)
This spectrum is (almost) Gaussian in shape; the corre-
sponding power ∝ |P (ω)|2 decays to 1/e2 of its maxi-
mum value within a distance of ± hωd around ωd (cf.
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Fig. 3. Modeled ultrasound diagnostics driving pulse. The up-
per part of the figure shows the time series P (t) (t normalized
to T ≡ 1/fd), the lower part the normalized Fourier spectrum
of the acoustic power given by P (t). It is centered around the
mean frequency fd = 3 MHz and decays to 1/e2 of its maxi-
mum value within hfd = fd/3 = 1 MHz above and below fd.
This corresponds to the effective spatial extent of the pulse of
≈ 3 wavelengths.

Fig. 3). Thus, the reciprocal 1/h of the relative width is
an approximate measure for the spatial extension of the
pulse (in wavelengths). In our example, the pulse is about
3 wavelengths long and corresponds to the shortest pulses
routinely available in medical applications of diagnostic
ultrasound.

4.2 Effects on the cross-sections

As we are still in the linear limit, the pulsed driving can be
understood as a superposition of monochromatic waves of
frequency ω with amplitudes proportional to the Fourier
components P (ω) in (32). The response will be there-
fore obtained from a convolution of the monochromatic
response discussed above and the spectrum P (ω).

Figure 4 shows the cross-sections σsc(R0) and σνabs(R0)
for monochromatic and pulsed driving in comparison. The
figure is a blow-up of the region near Rres0 , which is the
only area where there are marked differences between
the responses to the different drivings. As it may have
been expected, the response curves for polychromatic driv-
ing are broader, because unlike the monochromatic case,
where the single frequency ωd corresponds to a single,
well-defined Rres0 , there are a number of R0 for which
the bubbles react strongly to the most intense frequency
components in P (ω). Correspondingly, a bubble driven at
resonance by a monochromatic wave is a more effective
scatterer than for pulsed driving, so that the maximum
height of the cross-section curves is smaller in the latter
case.

Moreover, with pulsed driving there is a slight, but
significant shift in the maximum of both cross-sections
towards larger R0. This is due to the asymmetry in the
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Fig. 4. Scattering (thick lines) and absorption (thin lines)
cross-sections for bubbles driven by a monochromatic 3 MHz
sound wave (dashed) and a diagnostic pulse according to (31)
with center frequency 3 MHz (solid). The response to the poly-
chromatic driving displays a broader, lower resonance peak,
which is shifted towards larger R0. Further away from reso-
nance, the differences to the monochromatic case soon become
negligible.

response curve around the resonance radius that is ap-
parent already in the monochromatic case (cf. Fig. 4):
on increasing R0 from Rres0 , the cross-sections do not
drop as rapidly as when R0 is decreased from the max-
imum of the curves. Therefore, the contributions in P (ω)
with ω slightly smaller than ωd (which correspond to
R0(ω) > Rres0 (ωd)) will have a larger effect on σsc and
σνabs than the contributions with ω slightly smaller than
ωd, even if they are represented with the same weight in
P (ω). Consequently, upon convolution of the spectrum,
the cross-sections are increased for the larger R0 and the
maximum of the curves is shifted towards R0 > Rres0 (ωd).

If the width of the pulse is varied, the peak shift and
peak broadening vary correspondingly: thus, if the pulse
becomes very short (shorter than one wavelength), the res-
onance structure is almost completely lost. Using longer
and longer wavetrains (smaller h), on the other hand, leads
to successively sharper resonance peaks, while the repet-
itive oscillations of the bubble allow for the occurrence
of subharmonic resonances, provided that the bubbles re-
main shape stable (cf. [6]).

5 Results of full nonlinear computations

Let us now come back to the general formulas presented
in Section 2 and drop the assumption of linear response.
We will find that the features of the nonlinear case can be
quite different from the linear results presented above. Not
surprisingly, the cross-sections now depend on the driv-
ing pressure amplitude Pa, which is not the case for lin-
ear driving. It should be noted that, in order to compare
these results with experimental measurements, they have
to be convoluted with the bubble size distribution, as in
virtually all experiments the bubble suspensions are not
monodisperse.
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Fig. 5. Relative error of scattering cross-section computations
with and without passive emission taken into account. The
numerical calculations were performed using the complete for-
mula (11) with or without the passive contribution and driv-
ing with an ultrasound diagnostics pulse according to (31).
The curves correspond to driving pressure amplitudes Pa of
1−10 atm, in steps of 1 atm. The error is nowhere greater
than about 0.25%.
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Fig. 6. Total scattering cross-sections of bubbles driven by
ultrasound pulses. From bottom to top: Pa = 1−10 atm in
steps of 1 atm. The linear profile of σsc is drastically changed
for high Pa, the resonance radius shifts to smaller R0 due to
nonlinearities and the cross-sections are much larger around
the resonance radius than in the linear case (up to 3–4 orders
of magnitude).

5.1 Scattering cross-sections

With P (t) given by (31), Iinc can be computed, so that
with equations (1, 6, 7–9), σsc results. Let us first con-
vince ourselves that the passive part of (1) is tiny in the
nonlinear case, too. In Figure 5 we present the relative
errors made in determining scattering cross-sections from
P as (r, t) (or qas (t)) alone rather than from the full inter-
ference formula (11). It is easy to see that these errors
are nowhere greater than about 0.25%, and in most cases
much smaller. The huge advantage of (actively emitting)
bubbles as scatterers compared to stiff solid bodies of sim-
ilar size is here once more strikingly demonstrated. For
computational simplicity, the cross-sections presented in
the following figures were computed using only the active
emission part.
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Figure 6 shows the normalized cross-sections for var-
ious R0 ∈ {0.1 µm, 5.0 µm} and Pa = 1−10 atm (in
1 atm intervals). These values represent typical bubble
sizes found in diagnostic bubble suspensions (often the
size distribution shows a peak around R0 ≈ 1 µm [1]) and
typical sound pressure amplitudes in the focus of clinical
ultrasound devices. From linear analysis, we know what
the cross-sections for Pa → 0 look like. This curve is read-
ily reproduced for small Pa. While the curve for 1 atm
is still essentially unaltered compared to the linear case,
there are dramatic changes in σsc(R0) with higher Pa.
E.g., the resonance radius Rres0 undergoes a shift away
from its linear value to smaller R0, i.e., in the opposite
direction of the shift induced by the polychromatic pulse.
This shift is explained by the nonlinearity of the oscil-
lator (cf. [26]): when expanding the RP equation up to
nonlinearities of third order, one obtains for the nonlinear
eigenfrequency

ωNL0 = ω0 + a2

(
3β

8ω0
−

5α2

12ω3
0

)
, (33)

with the amplitude a of the oscillation and

α = −

(
2ω2

0 −
2ζ

ρlR0

)
, β =

10

3
ω2

0 +
14ζ

3ρlR0
· (34)

It is easy to see that with these values we always have
ωNL0 < ω0, i.e., the bubble is an oscillator with a soft po-
tential. With stronger nonlinearity, ωNL0 becomes smaller
for a given R0; in order to be in resonance, we require
ωd = ωNL0 with constant ωd. Therefore, R0 must be de-
creased in order to increase ω0 beyond ωd to ensure that
the resonance condition ωd = ωNL0 is again fulfilled. Thus,

the nonlinear resonance radius Rres,NL0 is smaller than its
linear counterpart. Note also that the resonance structure
is blurred especially for high driving; this is in contrast to
the case of monochromatic driving [6], where well-defined
resonance radii can be recognized up to the highest Pa.

A most striking feature of Figure 6 is the tremen-
dously enlarged scattering cross-section, especially at radii
smaller than the linear resonance radius (i.e., in the re-
gion of nonlinear resonance). Sometimes, σsc is greater by
several orders of magnitude compared to the linear case

(note the logarithmic scale). Only for R0 � Rres,lin0 is the
shape of the curve virtually unaltered. Thus, the scatter-
ing cross-sections for small bubbles (below ≈ R0 = 1 µm)
are severely underestimated by the linear theory.

The reason for this effect is found in the typical R(t)
radius dynamics of nonlinearly driven bubbles: when Pa is
sufficiently high, they undergo violent collapsing instead
of just a smooth oscillation. This leads to high velocities
and extraordinarily high accelerations of the bubble wall,
exceeding 109g in the solutions of (6) for the highest Pa
of our study (even larger accelerations are known in other
contexts of bubble dynamics, see [19]). These values of

Ṙ and especially R̈, which far exceed those expected for
linear response, lead to very high active emission pressures
(cf. Eq. (3)) and thus to a huge σsc.
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Fig. 7. Total viscous absorption cross-sections of bubbles
driven by ultrasound pulses. From bottom to top: Pa =
1−10 atm in steps of 1 atm. The change in shape with growing
Pa is not as drastic as for the scattering cross-sections. σνabs
is considerably smaller than σsc for the highest Pa, while it is
much larger in the linear case of small driving.

5.2 Absorption cross-sections

In Figure 7 the viscous absorption cross-section σνabs com-
puted from equations (13, 14) is shown for the same pa-
rameter combinations as for σsc in Figure 6. As expected,
the resonance peak undergoes similar nonlinear shifting.
However, although σνabs also shows a tendency to grow
for higher Pa, it is obvious that its dependence on driv-
ing pressure amplitude is nowhere near as dramatic as in
the case of the scattering cross-section. This is because in
the computation of W ν

dis via (13), only the velocity Ṙ is
present, but not the acceleration, which is responsible for
the tremendous sound emission, as argued in the previous
section. As usual, the radiative processes are connected
with acceleration, while the dissipative processes are gov-
erned by velocity. For high Pa we can therefore conclude
that – regardless of the size of the bubble – most of the
incident sound energy is scattered again into sound, and
not dissipated via viscous forces.

5.3 Secondary absorption

It is tempting to conclude that for the highest Pa we have
the optimal situation for detection of scattered sound.
This is not necessarily so, however, because of the spec-
trum of the emitted acoustic radiation. We show in a
separate paper [9] that the most strongly driven bubbles
emit sound in a spectrum of immense band width, with
a large portion of the energy in the ultra high frequency
part (GHz). These frequencies are readily absorbed (on a
length scale of cm or less) by water or other media (blood,
tissue) frequently encountered in diagnostic applications
(cf. e.g. [27,28]). With this absorption, most of the sound
energy is converted into heat. Figure 8 shows the example
of the effectively detected scattered sound after the pulses
have traveled through a 5 cm layer of water. The absorp-
tion properties of water are well known: the energy con-
tained in every Fourier component (frequency f = ω/2π)
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Fig. 8. Effective scattering cross-sections of bubbles driven by
ultrasound pulses and separated from the detector by a water
layer of 5cm width, which acts to damp out high frequency
sound according to (35). From bottom to top: Pa = 1−10 atm
in steps of 1 atm. The growth for large Pa is much diminished
here as compared to Figure 6. The high frequency components
of the sound emitted by the small bubbles at high Pa are ab-
sorbed in water and thus the major part of the emitted sound
energy is lost to the detector.

of the emitted sound signal decays over a distance r like

Es(r, f) = Es(0, f) exp(−αwf
2r) , (35)

with the known characteristic absorption coefficient of
water αw ≈ 1.5 × 10−14 s2/m [29]. Thus, the highest
frequency components experience the strongest damping,
and it is especially the high-power, high-frequency emis-
sion of scatterers at small R0 which is radically diminished
by this process, although the cross-sections do not drop to
or near their linear values. The implications for diagnos-
tics, such as possible risks of the heat deposition connected
with the absorption, are dealt with in separate work [9].

6 Summary and conclusions
We have presented a unified view of gas bubble sound
scattering and absorption. Starting from the description
of the bubble as a nonlinear oscillator, general formulas
have been developed that can be shown to transform, in
certain limiting cases, into a number of apparently dis-
crepant formulas found in literature, whether they be de-
rived from oscillator theory [4], scattering theory [5] or the
theory of solid body sound scattering [3]. It is important
to state that there is no antagonism between “scatter-
ing” and “active sound emission”. Both terms refer to the
sound that can be detected after incident sound has hit a
gas bubble. The total scattering cross-section does contain
a contribution of passive sound emission, but this contri-
bution is tiny and can always be neglected for situations
in ultrasound diagnostics. Bubbles driven in the nonlinear
range show a much larger scattering cross-section than in
the linear case and are more “actively” emitting sound in
the sense that the incident energy is primarily converted
into sound and not into viscous heating, as is the case for
linear driving. The most prodigiously radiating bubbles,
at small radii and large driving amplitude, emit such high
frequency sound that it is again absorbed by the surround-
ing medium and leads to secondary heating. The effective

yield of scattered sound energy is therefore much smaller
than what would be expected without taking absorption
into account. Still, the ultrasound scattering capabilities
of bubbles and therefore their effectiveness as a contrast
agent in diagnostics are considerably enhanced due to the
nonlinearity of the oscillations.
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